Approximability of all Boolean CSPs with linear sketches

24 Feb 2021  ·  Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, Santhoshini Velusamy ·

In this work we consider the approximability of $\textsf{Max-CSP}(f)$ in the context of sketching algorithms and completely characterize the approximability of all Boolean CSPs. Specifically, given $f$, $\gamma$ and $\beta$ we show that either (1) the $(\gamma,\beta)$-approximation version of $\textsf{Max-CSP}(f)$ has a linear sketching algorithm using $O(\log n)$ space, or (2) for every $\epsilon > 0$ the $(\gamma-\epsilon,\beta+\epsilon)$-approximation version of $\textsf{Max-CSP}(f)$ requires $\Omega(\sqrt{n})$ space for any sketching algorithm. We also prove lower bounds against streaming algorithms for several CSPs. In particular, we recover the streaming dichotomy of [CGV20] for $k=2$ and show streaming approximation resistance of all CSPs for which $f^{-1}(1)$ supports a distribution with uniform marginals. Our positive results show wider applicability of bias-based algorithms used previously by [GVV17] and [CGV20] by giving a systematic way to discover biases. Our negative results combine the Fourier analytic methods of [KKS15], which we extend to a wider class of CSPs, with a rich collection of reductions among communication complexity problems that lie at the heart of the negative results.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Computational Complexity Data Structures and Algorithms

Datasets


  Add Datasets introduced or used in this paper