Classification of attention performance post-longitudinal tDCS via functional connectivity and machine learning methods

Attention is the brain's mechanism for selectively processing specific stimuli while filtering out irrelevant information. Characterizing changes in attention following long-term interventions (such as transcranial direct current stimulation (tDCS)) has seldom been emphasized in the literature. To classify attention performance post-tDCS, this study uses functional connectivity and machine learning algorithms. Fifty individuals were split into experimental and control conditions. On Day 1, EEG data was obtained as subjects executed an attention task. From Day 2 through Day 8, the experimental group was administered 1mA tDCS, while the control group received sham tDCS. On Day 10, subjects repeated the task mentioned on Day 1. Functional connectivity metrics were used to classify attention performance using various machine learning methods. Results revealed that combining the Adaboost model and recursive feature elimination yielded a classification accuracy of 91.84%. We discuss the implications of our results in developing neurofeedback frameworks to assess attention.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here