Causal Disentanglement with Network Information for Debiased Recommendations

14 Apr 2022  ·  Paras Sheth, Ruocheng Guo, Lu Cheng, Huan Liu, K. Selçuk Candan ·

Recommender systems aim to recommend new items to users by learning user and item representations. In practice, these representations are highly entangled as they consist of information about multiple factors, including user's interests, item attributes along with confounding factors such as user conformity, and item popularity. Considering these entangled representations for inferring user preference may lead to biased recommendations (e.g., when the recommender model recommends popular items even if they do not align with the user's interests). Recent research proposes to debias by modeling a recommender system from a causal perspective. The exposure and the ratings are analogous to the treatment and the outcome in the causal inference framework, respectively. The critical challenge in this setting is accounting for the hidden confounders. These confounders are unobserved, making it hard to measure them. On the other hand, since these confounders affect both the exposure and the ratings, it is essential to account for them in generating debiased recommendations. To better approximate hidden confounders, we propose to leverage network information (i.e., user-social and user-item networks), which are shown to influence how users discover and interact with an item. Aside from the user conformity, aspects of confounding such as item popularity present in the network information is also captured in our method with the aid of \textit{causal disentanglement} which unravels the learned representations into independent factors that are responsible for (a) modeling the exposure of an item to the user, (b) predicting the ratings, and (c) controlling the hidden confounders. Experiments on real-world datasets validate the effectiveness of the proposed model for debiasing recommender systems.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods