CAE-Transformer: Transformer-based Model to Predict Invasiveness of Lung Adenocarcinoma Subsolid Nodules from Non-thin Section 3D CT Scans

Lung cancer is the leading cause of mortality from cancer worldwide and has various histologic types, among which Lung Adenocarcinoma (LUAC) has recently been the most prevalent one. The current approach to determine the invasiveness of LUACs is surgical resection, which is not a viable solution to fight lung cancer in a timely fashion. An alternative approach is to analyze chest Computed Tomography (CT) scans. The radiologists' analysis based on CT images, however, is subjective and might result in a low accuracy. In this paper, a transformer-based framework, referred to as the "CAE-Transformer", is developed to efficiently classify LUACs using whole CT images instead of finely annotated nodules. The proposed CAE-Transformer can achieve high accuracy over a small dataset and requires minor supervision from radiologists. The CAE Transformer utilizes an encoder to automatically extract informative features from CT slices, which are then fed to a modified transformer to capture global inter-slice relations and provide classification labels. Experimental results on our in-house dataset of 114 pathologically proven Sub-Solid Nodules (SSNs) demonstrate the superiority of the CAE-Transformer over its counterparts, achieving an accuracy of 87.73%, sensitivity of 88.67%, specificity of 86.33%, and AUC of 0.913, using a 10-fold cross-validation.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods