Breaking Symmetry When Training Transformers

6 Feb 2024  ·  Chunsheng Zuo, Michael Guerzhoy ·

As we show in this paper, the prediction for output token $n+1$ of Transformer architectures without one of the mechanisms of positional encodings and causal attention is invariant to permutations of input tokens $1, 2, ..., n-1$. Usually, both mechanisms are employed and the symmetry with respect to the input tokens is broken. Recently, it has been shown that one can train Transformers without positional encodings. This must be enabled by the causal attention mechanism. In this paper, we elaborate on the argument that the causal connection mechanism must be responsible for the fact that Transformers are able to model input sequences where the order is important. Vertical "slices" of Transformers are all encouraged to represent the same location $k$ in the input sequence. We hypothesize that residual connections contribute to this phenomenon, and demonstrate evidence for this.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods