Bistatic Doppler Frequency Estimation with Asynchronous Moving Devices for Integrated Sensing and Communications

21 Mar 2024  ·  Gianmaria Ventura, Zaman Bhalli, Michele Rossi, Jacopo Pegoraro ·

In this letter, we present for the first time a method to estimate the bistatic Doppler frequency of a target with clock asynchronous and mobile Integrated Sensing And Communication (ISAC) devices. Existing approaches have separately tackled the presence of phase offsets due to clock asynchrony or the additional Doppler shift due to device movement. However, in real ISAC scenarios, these two sources of phase nuisance are concurrently present, making the estimation of the target's Doppler frequency particularly challenging. Our method solves the problem using the sole wireless signal at the receiver, by computing Channel Impulse Response (CIR) phase differences across different multipath components and subsequent time instants. In this way, we cancel out phase offsets. Then, we construct a system of equations that allows disentangling the target's Doppler frequency from that of the moving device. The proposed method is validated via simulation, exploring the impact of different system parameters. Numerical results show that our approach is a viable way of estimating Doppler frequency in bistatic asynchronous ISAC scenarios with mobile devices.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here