Bifurcation analysis of waning-boosting epidemiological models with repeat infections and varying immunity periods

13 May 2023  ·  Richmond Opoku-Sarkodie, Ferenc A. Bartha, Mónika Polner, Gergely Röst ·

We consider the SIRWJS epidemiological model that includes the waning and boosting of immunity via secondary infections. We carry out combined analytical and numerical investigations of the dynamics. The formulae describing the existence and stability of equilibria are derived. Combining this analysis with numerical continuation techniques, we construct global bifurcation diagrams with respect to several epidemiological parameters. The bifurcation analysis reveals a very rich structure of possible global dynamics. We show that backward bifurcation is possible at the critical value of the basic reproduction number, $\mathcal{R}_0 = 1$. Furthermore, we find stability switches and Hopf bifurcations from steady states forming multiple endemic bubbles, and saddle-node bifurcations of periodic orbits. Regions of bistability are also found, where either two stable steady states, or a stable steady state and a stable periodic orbit coexist. This work provides an insight to the rich and complicated infectious disease dynamics that can emerge from the waning and boosting of immunity.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here