Beyond Double Ascent via Recurrent Neural Tangent Kernel in Sequential Recommendation

8 Sep 2022  ·  Ruihong Qiu, Zi Huang, Hongzhi Yin ·

Overfitting has long been considered a common issue to large neural network models in sequential recommendation. In our study, an interesting phenomenon is observed that overfitting is temporary. When the model scale is increased, the trend of the performance firstly ascends, then descends (i.e., overfitting) and finally ascends again, which is named as double ascent in this paper. We therefore raise an assumption that a considerably larger model will generalise better with a higher performance. In an extreme case to infinite-width, performance is expected to reach the limit of this specific structure. Unfortunately, it is impractical to directly build a huge model due to the limit of resources. In this paper, we propose the Overparameterised Recommender (OverRec), which utilises a recurrent neural tangent kernel (RNTK) as a similarity measurement for user sequences to successfully bypass the restriction of hardware for huge models. We further prove that the RNTK for the tied input-output embeddings in recommendation is the same as the RNTK for general untied input-output embeddings, which makes RNTK theoretically suitable for recommendation. Since the RNTK is analytically derived, OverRec does not require any training, avoiding physically building the huge model. Extensive experiments are conducted on four datasets, which verifies the state-of-the-art performance of OverRec.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here