BEACON: Bayesian Experimental design Acceleration with Conditional Normalizing flows $-$ a case study in optimal monitor well placement for CO$_2$ sequestration

28 Mar 2024  ·  Rafael Orozco, Abhinav Gahlot, Felix J. Herrmann ·

CO$_2$ sequestration is a crucial engineering solution for mitigating climate change. However, the uncertain nature of reservoir properties, necessitates rigorous monitoring of CO$_2$ plumes to prevent risks such as leakage, induced seismicity, or breaching licensed boundaries. To address this, project managers use borehole wells for direct CO$_2$ and pressure monitoring at specific locations. Given the high costs associated with drilling, it is crucial to strategically place a limited number of wells to ensure maximally effective monitoring within budgetary constraints. Our approach for selecting well locations integrates fluid-flow solvers for forecasting plume trajectories with generative neural networks for plume inference uncertainty. Our methodology is extensible to three-dimensional domains and is developed within a Bayesian framework for optimal experimental design, ensuring scalability and mathematical optimality. We use a realistic case study to verify these claims by demonstrating our method's application in a large scale domain and optimal performance as compared to baseline well placement.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here