Automated crater detection with human level performance

23 Oct 2020  ·  Christopher Lee, James Hogan ·

Crater cataloging is an important yet time-consuming part of geological mapping. We present an automated Crater Detection Algorithm (CDA) that is competitive with expert-human researchers and hundreds of times faster. The CDA uses multiple neural networks to process digital terrain model and thermal infra-red imagery to identify and locate craters across the surface of Mars. We use additional post-processing filters to refine and remove potential false crater detections, improving our precision and recall by 10% compared to Lee (2019). We now find 80% of known craters above 3km in diameter, and identify 7,000 potentially new craters (13% of the identified craters). The median differences between our catalog and other independent catalogs is 2-4% in location and diameter, in-line with other inter-catalog comparisons. The CDA has been used to process global terrain maps and infra-red imagery for Mars, and the software and generated global catalog are available at https://doi.org/10.5683/SP2/CFUNII.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here