Unlocking Tuning-free Generalization: Minimizing the PAC-Bayes Bound with Trainable Priors

30 May 2023  ·  Xitong Zhang, Avrajit Ghosh, Guangliang Liu, Rongrong Wang ·

It is widely recognized that the generalization ability of neural networks can be greatly enhanced through carefully designing the training procedure. The current state-of-the-art training approach involves utilizing stochastic gradient descent (SGD) or Adam optimization algorithms along with a combination of additional regularization techniques such as weight decay, dropout, or noise injection. Optimal generalization can only be achieved by tuning a multitude of hyperparameters through grid search, which can be time-consuming and necessitates additional validation datasets. To address this issue, we introduce a practical PAC-Bayes training framework that is nearly tuning-free and requires no additional regularization while achieving comparable testing performance to that of SGD/Adam after a complete grid search and with extra regularizations. Our proposed algorithm demonstrates the remarkable potential of PAC training to achieve state-of-the-art performance on deep neural networks with enhanced robustness and interpretability.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods