Attractor Selection in Nonlinear Energy Harvesting Using Deep Reinforcement Learning

3 Oct 2020  ·  Xue-She Wang, Brian P. Mann ·

Recent research efforts demonstrate that the intentional use of nonlinearity enhances the capabilities of energy harvesting systems. One of the primary challenges that arise in nonlinear harvesters is that nonlinearities can often result in multiple attractors with both desirable and undesirable responses that may co-exist. This paper presents a nonlinear energy harvester which is based on translation-to-rotational magnetic transmission and exhibits coexisting attractors with different levels of electric power output. In addition, a control method using deep reinforcement learning was proposed to realize attractor switching between coexisting attractors with constrained actuation.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here