Attacking Few-Shot Classifiers with Adversarial Support Sets

1 Jan 2021  ·  Elre Talea Oldewage, John F Bronskill, Richard E Turner ·

Few-shot learning systems, especially those based on meta-learning, have recently made significant advances, and are now being considered for real world problems in healthcare, personalization, and science. In this paper, we examine the robustness of such deployed few-shot learning systems when they are fed an imperceptibly perturbed few-shot dataset, showing that the resulting predictions on test inputs can become worse than chance. This is achieved by developing a novel Adversarial Support Set Attack which crafts an adversarial set of examples. When even a small subset of adversarial data points is inserted into the support set of a meta-learner, accuracy is significantly reduced. For example, the average classification accuracy of CNAPs on the Aircraft dataset in the META-DATASET benchmark drops from 69.2% to 9.1% when only 20% of the support set is poisoned by imperceptible perturbations. We evaluate the new attack on a variety of few-shot classification algorithms including MAML, prototypical networks, and CNAPs, on both small scale (miniImageNet) and large scale (META-DATASET) few-shot classification problems. Interestingly, adversarial support sets produced by attacking a meta-learning based few-shot classifier can also reduce the accuracy of a fine-tuning based few-shot classifier when both models use similar feature extractors.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods