Asymptotically optimal private estimation under mean square loss

31 Jul 2017  ·  Min Ye, Alexander Barg ·

We consider the minimax estimation problem of a discrete distribution with support size $k$ under locally differential privacy constraints. A privatization scheme is applied to each raw sample independently, and we need to estimate the distribution of the raw samples from the privatized samples. A positive number $\epsilon$ measures the privacy level of a privatization scheme. In our previous work (arXiv:1702.00610), we proposed a family of new privatization schemes and the corresponding estimator. We also proved that our scheme and estimator are order optimal in the regime $e^{\epsilon} \ll k$ under both $\ell_2^2$ and $\ell_1$ loss. In other words, for a large number of samples the worst-case estimation loss of our scheme was shown to differ from the optimal value by at most a constant factor. In this paper, we eliminate this gap by showing asymptotic optimality of the proposed scheme and estimator under the $\ell_2^2$ (mean square) loss. More precisely, we show that for any $k$ and $\epsilon,$ the ratio between the worst-case estimation loss of our scheme and the optimal value approaches $1$ as the number of samples tends to infinity.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here