Artificial Intelligence and Aesthetic Judgment

21 Aug 2023  ·  Jessica Hullman, Ari Holtzman, Andrew Gelman ·

Generative AIs produce creative outputs in the style of human expression. We argue that encounters with the outputs of modern generative AI models are mediated by the same kinds of aesthetic judgments that organize our interactions with artwork. The interpretation procedure we use on art we find in museums is not an innate human faculty, but one developed over history by disciplines such as art history and art criticism to fulfill certain social functions. This gives us pause when considering our reactions to generative AI, how we should approach this new medium, and why generative AI seems to incite so much fear about the future. We naturally inherit a conundrum of causal inference from the history of art: a work can be read as a symptom of the cultural conditions that influenced its creation while simultaneously being framed as a timeless, seemingly acausal distillation of an eternal human condition. In this essay, we focus on an unresolved tension when we bring this dilemma to bear in the context of generative AI: are we looking for proof that generated media reflects something about the conditions that created it or some eternal human essence? Are current modes of interpretation sufficient for this task? Historically, new forms of art have changed how art is interpreted, with such influence used as evidence that a work of art has touched some essential human truth. As generative AI influences contemporary aesthetic judgment we outline some of the pitfalls and traps in attempting to scrutinize what AI generated media means.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods