Approximated Multi-Agent Fitted Q Iteration

19 Apr 2021  ·  Antoine Lesage-Landry, Duncan S. Callaway ·

We formulate an efficient approximation for multi-agent batch reinforcement learning, the approximated multi-agent fitted Q iteration (AMAFQI). We present a detailed derivation of our approach. We propose an iterative policy search and show that it yields a greedy policy with respect to multiple approximations of the centralized, learned Q-function. In each iteration and policy evaluation, AMAFQI requires a number of computations that scales linearly with the number of agents whereas the analogous number of computations increase exponentially for the fitted Q iteration (FQI), a commonly used approaches in batch reinforcement learning. This property of AMAFQI is fundamental for the design of a tractable multi-agent approach. We evaluate the performance of AMAFQI and compare it to FQI in numerical simulations. The simulations illustrate the significant computation time reduction when using AMAFQI instead of FQI in multi-agent problems and corroborate the similar performance of both approaches.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here