Anomal-E: A Self-Supervised Network Intrusion Detection System based on Graph Neural Networks

14 Jul 2022  ·  Evan Caville, Wai Weng Lo, Siamak Layeghy, Marius Portmann ·

This paper investigates Graph Neural Networks (GNNs) application for self-supervised network intrusion and anomaly detection. GNNs are a deep learning approach for graph-based data that incorporate graph structures into learning to generalise graph representations and output embeddings. As network flows are naturally graph-based, GNNs are a suitable fit for analysing and learning network behaviour. The majority of current implementations of GNN-based Network Intrusion Detection Systems (NIDSs) rely heavily on labelled network traffic which can not only restrict the amount and structure of input traffic, but also the NIDSs potential to adapt to unseen attacks. To overcome these restrictions, we present Anomal-E, a GNN approach to intrusion and anomaly detection that leverages edge features and graph topological structure in a self-supervised process. This approach is, to the best our knowledge, the first successful and practical approach to network intrusion detection that utilises network flows in a self-supervised, edge leveraging GNN. Experimental results on two modern benchmark NIDS datasets not only clearly display the improvement of using Anomal-E embeddings rather than raw features, but also the potential Anomal-E has for detection on wild network traffic.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here