Analyzing Knowledge Transfer in Deep Q-Networks for Autonomously Handling Multiple Intersections

2 May 2017  ·  David Isele, Akansel Cosgun, Kikuo Fujimura ·

We analyze how the knowledge to autonomously handle one type of intersection, represented as a Deep Q-Network, translates to other types of intersections (tasks). We view intersection handling as a deep reinforcement learning problem, which approximates the state action Q function as a deep neural network. Using a traffic simulator, we show that directly copying a network trained for one type of intersection to another type of intersection decreases the success rate. We also show that when a network that is pre-trained on Task A and then is fine-tuned on a Task B, the resulting network not only performs better on the Task B than an network exclusively trained on Task A, but also retained knowledge on the Task A. Finally, we examine a lifelong learning setting, where we train a single network on five different types of intersections sequentially and show that the resulting network exhibited catastrophic forgetting of knowledge on previous tasks. This result suggests a need for a long-term memory component to preserve knowledge.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here