An $L^2$ Analysis of Reinforcement Learning in High Dimensions with Kernel and Neural Network Approximation

15 Apr 2021  ·  Jihao Long, Jiequn Han, Weinan E ·

Reinforcement learning (RL) algorithms based on high-dimensional function approximation have achieved tremendous empirical success in large-scale problems with an enormous number of states. However, most analysis of such algorithms gives rise to error bounds that involve either the number of states or the number of features. This paper considers the situation where the function approximation is made either using the kernel method or the two-layer neural network model, in the context of a fitted Q-iteration algorithm with explicit regularization. We establish an $\tilde{O}(H^3|\mathcal {A}|^{\frac14}n^{-\frac14})$ bound for the optimal policy with $Hn$ samples, where $H$ is the length of each episode and $|\mathcal {A}|$ is the size of action space. Our analysis hinges on analyzing the $L^2$ error of the approximated Q-function using $n$ data points. Even though this result still requires a finite-sized action space, the error bound is independent of the dimensionality of the state space.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here