An Interactively Reinforced Paradigm for Joint Infrared-Visible Image Fusion and Saliency Object Detection

17 May 2023  ·  Di Wang, JinYuan Liu, Risheng Liu, Xin Fan ·

This research focuses on the discovery and localization of hidden objects in the wild and serves unmanned systems. Through empirical analysis, infrared and visible image fusion (IVIF) enables hard-to-find objects apparent, whereas multimodal salient object detection (SOD) accurately delineates the precise spatial location of objects within the picture. Their common characteristic of seeking complementary cues from different source images motivates us to explore the collaborative relationship between Fusion and Salient object detection tasks on infrared and visible images via an Interactively Reinforced multi-task paradigm for the first time, termed IRFS. To the seamless bridge of multimodal image fusion and SOD tasks, we specifically develop a Feature Screening-based Fusion subnetwork (FSFNet) to screen out interfering features from source images, thereby preserving saliency-related features. After generating the fused image through FSFNet, it is then fed into the subsequent Fusion-Guided Cross-Complementary SOD subnetwork (FC$^2$Net) as the third modality to drive the precise prediction of the saliency map by leveraging the complementary information derived from the fused image. In addition, we develop an interactive loop learning strategy to achieve the mutual reinforcement of IVIF and SOD tasks with a shorter training period and fewer network parameters. Comprehensive experiment results demonstrate that the seamless bridge of IVIF and SOD mutually enhances their performance, and highlights their superiority.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here