An inexact LPA for DC composite optimization and application to matrix completions with outliers

29 Mar 2023  ·  Ting Tao, Ruyu Liu, Shaohua Pan ·

This paper concerns a class of DC composite optimization problems which, as an extension of convex composite optimization problems and DC programs with nonsmooth components, often arises in robust factorization models of low-rank matrix recovery. For this class of nonconvex and nonsmooth problems, we propose an inexact linearized proximal algorithm (iLPA) by computing in each step an inexact minimizer of a strongly convex majorization constructed with a partial linearization of their objective functions at the current iterate, and establish the convergence of the generated iterate sequence under the Kurdyka-\L\"ojasiewicz (KL) property of a potential function. In particular, by leveraging the composite structure, we provide a verifiable condition for the potential function to have the KL property of exponent $1/2$ at the limit point, so for the iterate sequence to have a local R-linear convergence rate. Finally, we apply the proposed iLPA to a robust factorization model for matrix completions with outliers and non-uniform sampling, and numerical comparison with a proximal alternating minimization (PAM) method confirms iLPA yields the comparable relative errors or NMAEs within less running time, especially for large-scale real data.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here