An Extreme Learning Machine-Based System Frequency Nadir Constraint Linearization Method

12 Aug 2021  ·  Likai Liu, Zechun Hu, Nikhil Pathak, Haocheng Luo ·

Large-scale integration of converter-based renewable energy sources (RESs) into the power system will lead to a higher risk of frequency nadir limit violation and even frequency instability after the large power disturbance. Therefore, it is essential to consider the frequency nadir constraint (FNC) in power system scheduling. Nevertheless, the FNC is highly nonlinear and non-convex. The state-of-the-art method to simplify the constraint is to construct a low-order frequency response model at first, and then linearize the frequency nadir equation. In this letter, an extreme learning machine (ELM)-based network is built to de-rive the linear formulation of FNC, where the two-step fitting process is integrated into one training process and more details about the physical model of the generator are considered to reduce the fitting error. Simulation results show the superiority of the proposed method on the fitting accuracy.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here