An attention-based deep learning network for predicting Platinum resistance in ovarian cancer

8 Nov 2023  ·  Haoming Zhuang, Beibei Li, Jingtong Ma, Patrice Monkam, Shouliang Qi, Wei Qian, Dianning He ·

Background: Ovarian cancer is among the three most frequent gynecologic cancers globally. High-grade serous ovarian cancer (HGSOC) is the most common and aggressive histological type. Guided treatment for HGSOC typically involves platinum-based combination chemotherapy, necessitating an assessment of whether the patient is platinum-resistant. The purpose of this study is to propose a deep learning-based method to determine whether a patient is platinum-resistant using multimodal positron emission tomography/computed tomography (PET/CT) images. Methods: 289 patients with HGSOC were included in this study. An end-to-end SE-SPP-DenseNet model was built by adding Squeeze-Excitation Block (SE Block) and Spatial Pyramid Pooling Layer (SPPLayer) to Dense Convolutional Network (DenseNet). Multimodal data from PET/CT images of the regions of interest (ROI) were used to predict platinum resistance in patients. Results: Through five-fold cross-validation, SE-SPP-DenseNet achieved a high accuracy rate and an area under the curve (AUC) in predicting platinum resistance in patients, which were 92.6% and 0.93, respectively. The importance of incorporating SE Block and SPPLayer into the deep learning model, and considering multimodal data was substantiated by carrying out ablation studies and experiments with single modality data. Conclusions: The obtained classification results indicate that our proposed deep learning framework performs better in predicting platinum resistance in patients, which can help gynecologists make better treatment decisions. Keywords: PET/CT, CNN, SE Block, SPP Layer, Platinum resistance, Ovarian cancer

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods