An Analytically Solvable Model of Firing Rate Heterogeneity in Balanced State Networks

22 May 2023  ·  Alexander Schmidt, Peter Hiemeyer, Fred Wolf ·

Distributions of neuronal activity within cortical circuits are often found to display highly skewed shapes with many neurons emitting action potentials at low or vanishing rates, while some are active at high rates. Theoretical studies were able to reproduce such distributions, but come with a lack of mathematical tractability, preventing a deeper understanding of the impact of model parameters. In this study, using the Gauss-Rice neuron model, we present a balanced-state cortical circuit model for which the firing rate distribution can be exactly calculated. It offers selfconsistent solutions to recurrent neuronal networks and allows for the combination of multiple neuronal populations, with single or multiple synaptic receptors (e.g. AMPA and NMDA in excitatory populations), paving the way for a deeper understanding of how firing rate distributions are impacted by single neuron or synaptic properties.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here