Paper

An Algebraic Formalization of Forward and Forward-backward Algorithms

In this paper, we propose an algebraic formalization of the two important classes of dynamic programming algorithms called forward and forward-backward algorithms. They are generalized extensively in this study so that a wide range of other existing algorithms is subsumed. Forward algorithms generalized in this study subsume the ordinary forward algorithm on trellises for sequence labeling, the inside algorithm on derivation forests for CYK parsing, a unidirectional message passing on acyclic factor graphs, the forward mode of automatic differentiation on computation graphs with addition and multiplication, and so on. In addition, we reveal algebraic structures underlying complicated computation with forward algorithms. By the aid of the revealed algebraic structures, we also propose a systematic framework to design complicated variants of forward algorithms. Forward-backward algorithms generalized in this study subsume the ordinary forward-backward algorithm on trellises for sequence labeling, the inside-outside algorithm on derivation forests for CYK parsing, the sum-product algorithm on acyclic factor graphs, the reverse mode of automatic differentiation (a.k.a. back propagation) on computation graphs with addition and multiplication, and so on. We also propose an algebraic characterization of what can be computed by forward-backward algorithms and elucidate the relationship between forward and forward-backward algorithms.

Results in Papers With Code
(↓ scroll down to see all results)