Algorithmic Causal Effect Identification with causaleffect

9 Jul 2021  ·  Martí Pedemonte, Jordi Vitrià, Álvaro Parafita ·

Our evolution as a species made a huge step forward when we understood the relationships between causes and effects. These associations may be trivial for some events, but they are not in complex scenarios. To rigorously prove that some occurrences are caused by others, causal theory and causal inference were formalized, introducing the $do$-operator and its associated rules. The main goal of this report is to review and implement in Python some algorithms to compute conditional and non-conditional causal queries from observational data. To this end, we first present some basic background knowledge on probability and graph theory, before introducing important results on causal theory, used in the construction of the algorithms. We then thoroughly study the identification algorithms presented by Shpitser and Pearl in 2006, explaining our implementation in Python alongside. The main identification algorithm can be seen as a repeated application of the rules of $do$-calculus, and it eventually either returns an expression for the causal query from experimental probabilities or fails to identify the causal effect, in which case the effect is non-identifiable. We introduce our newly developed Python library and give some usage examples.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here