Algorithm for Adapting Cases Represented in a Tractable Description Logic

16 May 2014  ·  Liang Chang, Uli Sattler, Tianlong Gu ·

Case-based reasoning (CBR) based on description logics (DLs) has gained a lot of attention lately. Adaptation is a basic task in the CBR inference that can be modeled as the knowledge base revision problem and solved in propositional logic. However, in DLs, it is still a challenge problem since existing revision operators only work well for strictly restricted DLs of the \emph{DL-Lite} family, and it is difficult to design a revision algorithm which is syntax-independent and fine-grained. In this paper, we present a new method for adaptation based on the DL $\mathcal{EL_{\bot}}$. Following the idea of adaptation as revision, we firstly extend the logical basis for describing cases from propositional logic to the DL $\mathcal{EL_{\bot}}$, and present a formalism for adaptation based on $\mathcal{EL_{\bot}}$. Then we present an adaptation algorithm for this formalism and demonstrate that our algorithm is syntax-independent and fine-grained. Our work provides a logical basis for adaptation in CBR systems where cases and domain knowledge are described by the tractable DL $\mathcal{EL_{\bot}}$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here