Paper

Aggregative Self-Supervised Feature Learning from a Limited Sample

Self-supervised learning (SSL) is an efficient approach that addresses the issue of limited training data and annotation shortage. The key part in SSL is its proxy task that defines the supervisory signals and drives the learning toward effective feature representations. However, most SSL approaches usually focus on a single proxy task, which greatly limits the expressive power of the learned features and therefore deteriorates the network generalization capacity. In this regard, we hereby propose two strategies of aggregation in terms of complementarity of various forms to boost the robustness of self-supervised learned features. We firstly propose a principled framework of multi-task aggregative self-supervised learning from a limited sample to form a unified representation, with an intent of exploiting feature complementarity among different tasks. Then, in self-aggregative SSL, we propose to self-complement an existing proxy task with an auxiliary loss function based on a linear centered kernel alignment metric, which explicitly promotes the exploring of where are uncovered by the features learned from a proxy task at hand to further boost the modeling capability. Our extensive experiments on 2D natural image and 3D medical image classification tasks under limited data and annotation scenarios confirm that the proposed aggregation strategies successfully boost the classification accuracy.

Results in Papers With Code
(↓ scroll down to see all results)