Paper

Adversarial Attacks on GMM i-vector based Speaker Verification Systems

This work investigates the vulnerability of Gaussian Mixture Model (GMM) i-vector based speaker verification systems to adversarial attacks, and the transferability of adversarial samples crafted from GMM i-vector based systems to x-vector based systems. In detail, we formulate the GMM i-vector system as a scoring function of enrollment and testing utterance pairs. Then we leverage the fast gradient sign method (FGSM) to optimize testing utterances for adversarial samples generation. These adversarial samples are used to attack both GMM i-vector and x-vector systems. We measure the system vulnerability by the degradation of equal error rate and false acceptance rate. Experiment results show that GMM i-vector systems are seriously vulnerable to adversarial attacks, and the crafted adversarial samples prove to be transferable and pose threats to neuralnetwork speaker embedding based systems (e.g. x-vector systems).

Results in Papers With Code
(↓ scroll down to see all results)