Active Cell Balancing for Extended Operational Time of Lithium-Ion Battery Systems in Energy Storage Applications

2 May 2024  ·  Yiming Xu, Xiaohua Ge, Ruohan Guo, Weixiang Shen ·

Cell inconsistency within a lithium-ion battery system poses a significant challenge in maximizing the system operational time. This study presents an optimization-driven active balancing method to minimize the effects of cell inconsistency on the system operational time while simultaneously satisfying the system output power demand and prolonging the system operational time in energy storage applications. The proposed method utilizes a fractional order model to forecast the terminal voltage dynamics of each cell within a battery system, enhanced with a particle-swarm-optimisation-genetic algorithm for precise parameter identification. It is implemented under two distinct cell-level balancing topologies: independent cell balancing and differential cell balancing. Subsequently, the current distribution for each topology is determined by resolving two optimization control problems constrained by the battery's operational specifications and power demands. The effectiveness of the proposed method is validated by extensive experiments based on the two balancing topologies. The results demonstrate that the proposed method increases the operational time by 3.2%.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here