ACCTS: an Adaptive Model Training Policy for Continuous Classification of Time Series

29 Sep 2021  ·  Chenxi Sun, Moxian Song, Derun Cai, Shenda Hong, Hongyan Li ·

More and more real-world applications require to classify time series at every time. For example, critical patients should be detected for vital signs and diagnosed at all times to facilitate timely life-saving. For this demand, we propose a new concept, Continuous Classification of Time Series (CCTS), to achieve the high-accuracy classification at every time. Time series always evolves dynamically, changing features introducing the multi-distribution form. Thus, different from the existing one-shot classification, the key of CCTS is to model multiple distributions simultaneously. However, most models are hard to achieve it due to their independent identically distributed premise. If a model learns a new distribution, it will likely forget old ones. And if a model repeatedly learns similar data, it will likely be overfitted. Thus, two main problems are the catastrophic forgetting and the over fitting. In this work, we define CCTS as a continual learning task with the unclear distribution division. But different divisions differently affect two problems and a fixed division rule may become invalid as time series evolves. In order to overcome two main problems and finally achieve CCTS, we propose a novel Adaptive model training policy - ACCTS. Its adaptability represents in two aspects: (1) Adaptive multi-distribution extraction policy. Instead of the fixed rules and the prior knowledge, ACCTS extracts data distributions adaptive to the time series evolution and the model change; (2) Adaptive importance-based replay policy. Instead of reviewing all old distributions, ACCTS only replays the important samples adaptive to the contribution of data to the model. Experiments on four real-world datasets show that our method can classify more accurately than all baselines at every time.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here