Accelerating Nonnegative Matrix Factorization Algorithms using Extrapolation

17 May 2018  ·  Andersen Man Shun Ang, Nicolas Gillis ·

In this paper, we propose a general framework to accelerate significantly the algorithms for nonnegative matrix factorization (NMF). This framework is inspired from the extrapolation scheme used to accelerate gradient methods in convex optimization and from the method of parallel tangents. However, the use of extrapolation in the context of the two-block exact coordinate descent algorithms tackling the non-convex NMF problems is novel. We illustrate the performance of this approach on two state-of-the-art NMF algorithms, namely, accelerated hierarchical alternating least squares (A-HALS) and alternating nonnegative least squares (ANLS), using synthetic, image and document data sets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here