A Vision to Smart Radio Environment: Surface Wave Communication Superhighways

28 May 2020  ·  Kai-Kit Wong, Kin-Fai Tong, Zhiyuan Chu, Yangyang Zhang ·

Complementary to traditional approaches that focus on transceiver design for bringing the best out of unstable, lossy fading channels, one radical development in wireless communications that has recently emerged is to pursue a smart radio environment by using software-defined materials or programmable metasurfaces for establishing favourable propagation conditions. This article portraits a vision of communication superhighways enabled by surface wave (SW) propagation on "smart surfaces" for future smart radio environments. The concept differs from the mainstream efforts of using passive elements on a large surface for bouncing off radio waves intelligently towards intended user terminals. In this vision, energy efficiency will be ultra-high, due to much less pathloss compared to free space propagation, and the fact that SW is inherently confined to the smart surface not only greatly simplifies the task of interference management, but also makes possible exceptionally localized high-speed interference-free data access. We shall outline the opportunities and associated challenges arisen from the SW paradigm. We shall also attempt to shed light on several key enabling technologies that make this realizable. One important technology which will be discussed is a software-controlled fluidic waveguiding architecture that permits dynamic creation of high-throughput data highways.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here