A Sub-Quadratic Time Algorithm for Robust Sparse Mean Estimation

7 Mar 2024  ·  Ankit Pensia ·

We study the algorithmic problem of sparse mean estimation in the presence of adversarial outliers. Specifically, the algorithm observes a \emph{corrupted} set of samples from $\mathcal{N}(\mu,\mathbf{I}_d)$, where the unknown mean $\mu \in \mathbb{R}^d$ is constrained to be $k$-sparse. A series of prior works has developed efficient algorithms for robust sparse mean estimation with sample complexity $\mathrm{poly}(k,\log d, 1/\epsilon)$ and runtime $d^2 \mathrm{poly}(k,\log d,1/\epsilon)$, where $\epsilon$ is the fraction of contamination. In particular, the fastest runtime of existing algorithms is quadratic ($\Omega(d^2)$), which can be prohibitive in high dimensions. This quadratic barrier in the runtime stems from the reliance of these algorithms on the sample covariance matrix, which is of size $d^2$. Our main contribution is an algorithm for robust sparse mean estimation which runs in \emph{subquadratic} time using $\mathrm{poly}(k,\log d,1/\epsilon)$ samples. We also provide analogous results for robust sparse PCA. Our results build on algorithmic advances in detecting weak correlations, a generalized version of the light-bulb problem by Valiant.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods