A Rigorous Uncertainty-Aware Quantification Framework Is Essential for Reproducible and Replicable Machine Learning Workflows

13 Jan 2023  ·  Line Pouchard, Kristofer G. Reyes, Francis J. Alexander, Byung-Jun Yoon ·

The ability to replicate predictions by machine learning (ML) or artificial intelligence (AI) models and results in scientific workflows that incorporate such ML/AI predictions is driven by numerous factors. An uncertainty-aware metric that can quantitatively assess the reproducibility of quantities of interest (QoI) would contribute to the trustworthiness of results obtained from scientific workflows involving ML/AI models. In this article, we discuss how uncertainty quantification (UQ) in a Bayesian paradigm can provide a general and rigorous framework for quantifying reproducibility for complex scientific workflows. Such as framework has the potential to fill a critical gap that currently exists in ML/AI for scientific workflows, as it will enable researchers to determine the impact of ML/AI model prediction variability on the predictive outcomes of ML/AI-powered workflows. We expect that the envisioned framework will contribute to the design of more reproducible and trustworthy workflows for diverse scientific applications, and ultimately, accelerate scientific discoveries.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here