A powerful rank-based correction to multiple testing under positive dependency

17 Nov 2023  ·  Alexander Timans, Christoph-Nikolas Straehle, Kaspar Sakmann, Eric Nalisnick ·

We develop a novel multiple hypothesis testing correction with family-wise error rate (FWER) control that efficiently exploits positive dependencies between potentially correlated statistical hypothesis tests. Our proposed algorithm $\texttt{max-rank}$ is conceptually straight-forward, relying on the use of a $\max$-operator in the rank domain of computed test statistics. We compare our approach to the frequently employed Bonferroni correction, theoretically and empirically demonstrating its superiority over Bonferroni in the case of existing positive dependency, and its equivalence otherwise. Our advantage over Bonferroni increases as the number of tests rises, and we maintain high statistical power whilst ensuring FWER control. We specifically frame our algorithm in the context of parallel permutation testing, a scenario that arises in our primary application of conformal prediction, a recently popularized approach for quantifying uncertainty in complex predictive settings.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here