A Novel Semisupervised Contrastive Regression Framework for Forest Inventory Mapping with Multisensor Satellite Data

1 Dec 2022  ·  Shaojia Ge, Hong Gu, Weimin Su, Anne Lönnqvist, Oleg Antropov ·

Accurate mapping of forests is critical for forest management and carbon stocks monitoring. Deep learning is becoming more popular in Earth Observation (EO), however, the availability of reference data limits its potential in wide-area forest mapping. To overcome those limitations, here we introduce contrastive regression into EO based forest mapping and develop a novel semisupervised regression framework for wall-to-wall mapping of continuous forest variables. It combines supervised contrastive regression loss and semi-supervised Cross-Pseudo Regression loss. The framework is demonstrated over a boreal forest site using Copernicus Sentinel-1 and Sentinel-2 imagery for mapping forest tree height. Achieved prediction accuracies are strongly better compared to using vanilla UNet or traditional regression models, with relative RMSE of 15.1% on stand level. We expect that developed framework can be used for modeling other forest variables and EO datasets.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here