A Novel Low-Rank Tensor Method for Undersampling Artifact Removal in Respiratory Motion-Resolved Multi-Echo 3D Cones MRI

1 May 2023  ·  Seongho Jeong, MungSoo Kang, Gerald Behr, Heechul Jeong, Youngwook Kee ·

We propose a novel low-rank tensor method for respiratory motion-resolved multi-echo image reconstruction. The key idea is to construct a 3-way image tensor (space $\times$ echo $\times$ motion state) from the conventional gridding reconstruction of highly undersampled multi-echo k-space raw data, and exploit low-rank tensor structure to separate it from undersampling artifacts. Healthy volunteers and patients with iron overload were recruited and imaged on a 3T clinical MRI system for this study. Results show that our proposed method Successfully reduced severe undersampling artifacts in respiratory motion-state resolved complex source images, as well as subsequent R2* and quantitative susceptibility mapping (QSM). Compared to conventional respiratory motion-resolved compressed sensing (CS) image reconstruction, the proposed method had a reconstruction time at least three times faster, accounting for signal evolution along the echo dimension in the multi-echo data.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here