A Method for Auto-Differentiation of the Voronoi Tessellation

22 Dec 2023  ·  Sergei Shumilin, Alexander Ryabov, Evgeny Burnaev, Vladimir Vanovskii ·

Voronoi tessellation, also known as Voronoi diagram, is an important computational geometry technique that has applications in various scientific disciplines. It involves dividing a given space into regions based on the proximity to a set of points. Autodifferentiation is a powerful tool for solving optimization tasks. Autodifferentiation assumes constructing a computational graph that allows to compute gradients using backpropagation algorithm. However, often the Voronoi tessellation remains the only non-differentiable part of a pipeline, prohibiting end-to-end differentiation. We present the method for autodifferentiation of the 2D Voronoi tessellation. The method allows one to construct the Voronoi tessellation and pass gradients, making the construction end-to-end differentiable. We provide the implementation details and present several important applications. To the best of our knowledge this is the first autodifferentiable realization of the Voronoi tessellation providing full set of Voronoi geometrical parameters in a differentiable way.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here