A Mathematical Programming Approach to Optimal Classification Forests

18 Nov 2022  ·  Víctor Blanco, Alberto Japón, Justo Puerto, Peter Zhang ·

In this paper, we introduce Optimal Classification Forests, a new family of classifiers that takes advantage of an optimal ensemble of decision trees to derive accurate and interpretable classifiers. We propose a novel mathematical optimization-based methodology in which a given number of trees are simultaneously constructed, each of them providing a predicted class for the observations in the feature space. The classification rule is derived by assigning to each observation its most frequently predicted class among the trees in the forest. We provide a mixed integer linear programming formulation for the problem. We report the results of our computational experiments, from which we conclude that our proposed method has equal or superior performance compared with state-of-the-art tree-based classification methods. More importantly, it achieves high prediction accuracy with, for example, orders of magnitude fewer trees than random forests. We also present three real-world case studies showing that our methodology has very interesting implications in terms of interpretability.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here