A General Regularized Distributed Solution for System State Estimation from Relative Measurements

6 Aug 2021  ·  Marco Fabris, Giulia Michieletto, Angelo Cenedese ·

This work presents a novel general regularized distributed solution for the state estimation problem in networked systems. Resting on the graph-based representation of sensor networks and adopting a multivariate least-squares approach, the designed solution exploits the set of the available inter-sensor relative measurements and leverages a general regularization framework, whose parameter selection is shown to control the estimation procedure convergence performance. As confirmed by the numerical results, this new estimation scheme allows (i) the extension of other approaches investigated in the literature and (ii) the convergence optimization in correspondence to any (undirected) graph modeling the given sensor network.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here