Paper

A Free Lunch with Influence Functions? Improving Neural Network Estimates with Concepts from Semiparametric Statistics

Parameter estimation in empirical fields is usually undertaken using parametric models, and such models readily facilitate statistical inference. Unfortunately, they are unlikely to be sufficiently flexible to be able to adequately model real-world phenomena, and may yield biased estimates. Conversely, non-parametric approaches are flexible but do not readily facilitate statistical inference and may still exhibit residual bias. We explore the potential for Influence Functions (IFs) to (a) improve initial estimators without needing more data (b) increase model robustness and (c) facilitate statistical inference. We begin with a broad introduction to IFs, and propose a neural network method 'MultiNet', which seeks the diversity of an ensemble using a single architecture. We also introduce variants on the IF update step which we call 'MultiStep', and provide a comprehensive evaluation of different approaches. The improvements are found to be dataset dependent, indicating an interaction between the methods used and nature of the data generating process. Our experiments highlight the need for practitioners to check the consistency of their findings, potentially by undertaking multiple analyses with different combinations of estimators. We also show that it is possible to improve existing neural networks for `free', without needing more data, and without needing to retrain them.

Results in Papers With Code
(↓ scroll down to see all results)