A Feature-Based Prediction Model of Algorithm Selection for Constrained Continuous Optimisation

9 Feb 2016  ·  Shayan Poursoltan, Frank Neumann ·

With this paper, we contribute to the growing research area of feature-based analysis of bio-inspired computing. In this research area, problem instances are classified according to different features of the underlying problem in terms of their difficulty of being solved by a particular algorithm. We investigate the impact of different sets of evolved instances for building prediction models in the area of algorithm selection. Building on the work of Poursoltan and Neumann [11,10], we consider how evolved instances can be used to predict the best performing algorithm for constrained continuous optimisation from a set of bio-inspired computing methods, namely high performing variants of differential evolution, particle swarm optimization, and evolution strategies. Our experimental results show that instances evolved with a multi-objective approach in combination with random instances of the underlying problem allow to build a model that accurately predicts the best performing algorithm for a wide range of problem instances.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here