Given two point sets S and T, a many-to-many matching with demands (MMD) problem is the problem of finding a minimum-cost many-to-many matching between S and T such that each point of S (respectively T) is matched to at least a given number of the points of T (respectively S). We propose the first O(n^2) time algorithm for computing a one dimensional MMD (OMMD) of minimum cost between S and T, where |S|+|T| = n. In an OMMD problem, the input point sets S and T lie on the real line and the cost of matching a point to another point equals the distance between the two points... We also study a generalized version of the MMD problem, the many-to-many matching with demands and capacities (MMDC) problem, that in which each point has a limited capacity in addition to a demand. We give the first O(n^2) time algorithm for the minimum-cost one dimensional MMDC (OMMDC) problem. read more

PDF Abstract
Computational Geometry

Add Datasets
introduced or used in this paper