A Dynamic Equivalent Energy Storage Model of Natural Gas Networks for Joint Optimal Dispatch of Electricity-Gas Systems

24 Jul 2023  ·  Siyuan Wang, Wenchuan Wu, Chenhui Lin, Binbin Chen ·

The development of energy conversion techniques enhances the coupling between the gas network and power system. However, challenges remain in the joint optimal dispatch of electricity-gas systems. The dynamic model of the gas network, described by partial differential equations, is complex and computationally demanding for power system operators. Furthermore, information privacy concerns and limited accessibility to detailed gas network models by power system operators necessitate quantifying the equivalent energy storage capacity of gas networks. This paper proposes a multi-port energy storage model with time-varying capacity to represent the dynamic gas state transformation and operational constraints in a compact and intuitive form. The model can be easily integrated into the optimal dispatch problem of the power system. Test cases demonstrate that the proposed model ensures feasible control strategies and significantly reduces the computational burden while maintaining high accuracy in the joint optimal dispatch of electricity-gas systems. In contrast, the existing static equivalent model fails to capture the full flexibility of the gas network and may yield infeasible results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here