A deep learning method based on patchwise training for reconstructing temperature field

26 Jan 2022  ·  Xingwen Peng, Xingchen Li, Zhiqiang Gong, Xiaoyu Zhao, Wen Yao ·

Physical field reconstruction is highly desirable for the measurement and control of engineering systems. The reconstruction of the temperature field from limited observation plays a crucial role in thermal management for electronic equipment. Deep learning has been employed in physical field reconstruction, whereas the accurate estimation for the regions with large gradients is still diffcult. To solve the problem, this work proposes a novel deep learning method based on patchwise training to reconstruct the temperature field of electronic equipment accurately from limited observation. Firstly, the temperature field reconstruction (TFR) problem of the electronic equipment is modeled mathematically and transformed as an image-to-image regression task. Then a patchwise training and inference framework consisting of an adaptive UNet and a shallow multilayer perceptron (MLP) is developed to establish the mapping from the observation to the temperature field. The adaptive UNet is utilized to reconstruct the whole temperature field while the MLP is designed to predict the patches with large temperature gradients. Experiments employing finite element simulation data are conducted to demonstrate the accuracy of the proposed method. Furthermore, the generalization is evaluated by investigating cases under different heat source layouts, different power intensities, and different observation point locations. The maximum absolute errors of the reconstructed temperature field are less than 1K under the patchwise training approach.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here