A Deep 2-Dimensional Dynamical Spiking Neuronal Network for Temporal Encoding trained with STDP

1 Sep 2020  ·  Matthew Evanusa, Cornelia Fermuller, Yiannis Aloimonos ·

The brain is known to be a highly complex, asynchronous dynamical system that is highly tailored to encode temporal information. However, recent deep learning approaches to not take advantage of this temporal coding. Spiking Neural Networks (SNNs) can be trained using biologically-realistic learning mechanisms, and can have neuronal activation rules that are biologically relevant. This type of network is also structured fundamentally around accepting temporal information through a time-decaying voltage update, a kind of input that current rate-encoding networks have difficulty with. Here we show that a large, deep layered SNN with dynamical, chaotic activity mimicking the mammalian cortex with biologically-inspired learning rules, such as STDP, is capable of encoding information from temporal data. We argue that the randomness inherent in the network weights allow the neurons to form groups that encode the temporal data being inputted after self-organizing with STDP. We aim to show that precise timing of input stimulus is critical in forming synchronous neural groups in a layered network. We analyze the network in terms of network entropy as a metric of information transfer. We hope to tackle two problems at once: the creation of artificial temporal neural systems for artificial intelligence, as well as solving coding mechanisms in the brain.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here