A Data-Driven Condition Monitoring Method for Capacitor in Modular Multilevel Converter (MMC)

The modular multilevel converter (MMC) is a topology that consists of a high number of capacitors, and degradation of capacitors can lead to converter malfunction, limiting the overall system lifetime. Condition monitoring methods can be applied to assess the health status of capacitors and realize predictive maintenance to improve reliability. Current research works for condition monitoring of capacitors in an MMC mainly monitor either capacitance or equivalent series resistance (ESR), while these two health indicators can shift at different speeds and lead to different end-of-life times. Hence, monitoring only one of these parameters may lead to unreliable health status evaluation. This paper proposes a data-driven method to estimate capacitance and ESR at the same time, in which particle swarm optimization (PSO) is leveraged to update the obtained estimations. Then, the results of the estimations are used to predict the sub-module voltage, which is based on a capacitor voltage equation. Furthermore, minimizing the mean square error between the predicted and actual measured voltage makes the estimations closer to the actual values. The effectiveness and feasibility of the proposed method are validated through simulations and experiments.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here