28 GHz Indoor and Outdoor Propagation Analysis at a Regional Airport

7 Jan 2021  ·  Kairui Du, Ozgur Ozdemir, Fatih Erden, Ismail Guvenc ·

In the upcoming 5G communication, the millimeter-wave (mmWave) technology will play an important role due to its large bandwidth and high data rate. However, mmWave frequencies have higher free-space path loss (FSPL) in line-of-sight (LOS) propagation compared to the currently used sub-6 GHz frequencies. What is more, in non-line-of-sight (NLOS) propagation, the attenuation of mmWave is larger compared to the lower frequencies, which can seriously degrade the performance. It is therefore necessary to investigate mmWave propagation characteristics for a given deployment scenario to understand coverage and rate performance for that environment. In this paper, we focus on 28 GHz wideband mmWave signal propagation characteristics at Johnston Regional Airport (JNX), a local airport near Raleigh, NC. To collect data, we use an NI PXI based channel sounder at 28 GHz for indoor, outdoor, and indoor-to-outdoor scenarios. Results on LOS propagation, reflection, penetration, signal coverage, and multi-path components (MPCs) show a lower indoor FSPL, a richer scattering, and a better coverage compared to outdoor. We also observe high indoor-to-outdoor propagation losses.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here