High-throughput discovery of topological materials using spin-orbit spillage

24 Oct 2018  ·  Kamal Choudhary, Kevin F. Garrity, Francesca Tavazza ·

We present the results of a high-throughput, first principles search for topological materials based on identifying materials with band inversion induced by spin-orbit coupling. Out of the currently available 30000 materials in our database, we investigate more than 4507 non-magnetic materials having heavy atoms and low bandgaps. We compute the spillage between the spin-orbit and non-spin-orbit wave functions, resulting in more than 1699 high-spillage candidate materials. We demonstrate that in addition to Z2 topological insulators, this screening method successfully identifies many semimetals and topological crystalline insulators. Our approach is applicable to the investigation of disordered or distorted materials, because it is not based on symmetry considerations, and it can be extended to magnetic materials. After our first screening step, we use Wannier-interpolation to calculate the topological invariants and to search for band crossings in our candidate materials. We discuss some individual example materials, as well as trends throughout our dataset, that is available at JARVIS-DFT website: https://jarvis.nist.gov/.

PDF Abstract

Categories


Materials Science